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INTRODUCTION

There has been a remarkable effort to elucidate the

behavior of polymers under fatigue loading conditions.

Recently, the phenomenology of polymer fatigue has been

thoroughly reviewed by Hertzberg and Manson [1]. In analogy

with the more well-studied low molecular weight materials,

fatigue failure in polymers occurs due to the accumulation

of damage resulting from repeated local plastic deformation.

It is generally understood that the formation of crazes and

associated cracks is responsible for the ultimate failure of

many glassy polymers. However, the exact nature of the

mechanisms involved is not yet well understood.

In view of the obvious importance that affiliates with

the prediction of Fatigue Crack Growth (FCG) rates, various

empirical as well as analytical approaches have been adopted

in an attempt to develop the law of FCG. Conventionally, FCG

"laws" are established by expressing the propagation rate of a

starter crack in terms of the applied stress or a related

function. It is not,therefore, surprising to find several

such empirical "laws" in the form: Z = f(K)m , where Z is the

rate of crack extension, K is the stress intensity factor, and

m is a numerical factor.

As demonstrated by numerous examples in the recent

literature, the conventional approach suffers from the lack

of applicability to experimental data. This is due to the

fact that these developments rest upon the classical view of

fracture mechanics. That is, the failure process involves only

the propagation of a single crack-cut; with or without a plastic
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zone ahead of its tip. However, direct observations in polymers

[2,3] and other materials [4] show that the crack propagates

through a damage zone. Specifically, Bevis and Hull [3] have

shown that the application of a tensile stress to a precracked

specimen of polystyrene produced a halo of microcrazes

surrounding the slowly growing root crack (Fig. la). A similar

zone was also observed under low cycle fatigue of thin samples

of polycarbonate and polystyrene [5]. The formation of a zone

of microcrazes around the crack tip could be a source of

substantial energy dissipation. This can be considered analogous

to the classical crack-tip plastic zone. Clearly, a major

alteration in the law of crack propagation would be expected due

to this phenomenon.

In this paper, we present a more precise analysis of

the problem of fatigue crack propagation. The treatment takes

into account the role played by the microcrazing zone and its

effect on the fatigue crack behavior under sinusoidal loading

conditions. A more general expression of the failure process

under such loading conditions is formulated. The model provides

a good description of experimental data on the crack growth rate

in polystyrene for which other models proved inadequate.

THEORETICAL DEVELOPMENTS

The Crack-Crazing Zone (CCZ): Based on the observations

outlined in the introduction, failure processes in polymers,

particularly under fatigue loading conditions, involved crack

propagation, root craze extension, and the simultaneous spread

of microcrazes around the crack-root craze (Fig. la). The "crack"

system, thus described, is coined as "Crack-Craze Zone" and is

abbreviated CCZ.
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Along an axis perpendicular to the CCZ direction,

microcrazing density assumes a bell-shaped distribution.

However, for simplicity, the microcrazing distribution is

approximated by an area of uniform microcraze distribution

with a distinct boundary. The assumed boundary separates the

microcrazed zone from the initial material (Fig. lb). We

consider CCZ propagation through a thin polymer sample so that

two dimensional analysis may be applied and that isothermal

conditions may be considered. Two geometrical parameters of

CCZ are accounted for: length (M4 and width (a) (Fig. lb).

Description of the CCZ history, therefore, requires the

definition of the functions k = £(t) and a = a(t), where t

stands for time.

Thermodynamics of CCZ Propagation: Viewed in

thermodynamic terms, the propagation of CCZ is an irreversible

process which is best treated by methods of irreversible

thermodynamics. The thermodynamics potential G(Gibbs free

energy) for the entire system can be expressed as the sum of

two terms

G = G1(o, T, 9,, a) + G2 (o, T, Z, a) (I)

G1 and G2 are the thermodynamic potentials of the CCZ and the

complementary part of the body. The stress o, and temperature,

T, are external parameters, whereas and a are internal

parameters.

Gibbs free energy, on the other hand, may be resolved

into Helmholtz free energy of the initial material F (T),
Helmholtz free energy of deformation F (a,T) and the work A

done by external forces. Therefore, we may write
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G(k ) = F o(k)(T) + FS(k)(O,T) - A(k) (2)

k = 1, 2 indicates the CCZ and the complementary part of the

body, respectively. Because the total displacement u may be

considered as the sum of a reversible part (elastic) ue
and irreversible (plastic) part u which are associated with

p
corresponding deformations c and e1 , the work A may be expressed

as the sum of an elastic part and a plastic part, i.e.,

A =A + A (3)
(k) e(k) p(k)

By definition, the potential energy (P) associated with the

elastic deformation is given by

P(k) F Fc(k) (a,T) A e(k) (4)

From (1), (2), (3) and (4) we obtain

G = F0 (T) +F (T) + P T, £,a ) + P2(a, T,k a)
1 2

-Apl -Ap2 (5)

The entropy production rate due to propagation of the

CCZ, as outlined above, is simply expressed as

3G . 3G
T S. =- . k + . (6)

Here, £ and a are the thermodynamic fluxes conjugated with the

thermodynamic forces: X - -- and X -3G These forces

may be represented as follows

X= J + Dk - Yeff a (7)

and X a M + Da -Yeff "

aP2

with J = being the well known energy release rate,

M = - - is a similar parameter which also has path-integral



-5-

representation for linear media. D and D a are the total

dissipation energy rates associated with k and a, respectively.

An effective surface energy yeff consists of the sum of the

difference between the free energy density of crazed and

uncrazed materials (fo2 - fol )' the crack surface energy

density y c and the density of the potential energy of crazed

material pl, i.e.,

Yeff = fo2 - fol + Yc + p1  (8)

Generally yc is a negligible quantity in comparison to the free

energy difference (fo2 -f )" Due to the small stress in the

vicinity of the free edges of a crack, p1 is also a small

quantity.

Conventionally, the law of crack propagation is

established by defining the relationship of the thermodynamic

force X . , represented by stress intensity factor K, or the energy

release rate J, and critical surface energy density y, to the

conjugated flux described as the crack growth rate k. Because

only one kinematic parameter is usually considered, i.e., Z,

the constitutive law has been always approached by invoking

the first law of thermodynamics (by satisfying the energy

balance). When two or more kinematic parameters are considered,

the energy balance alone would not suffice for the deduction of

a constitutive law. In our case, where k and a are considered,

an additional principle is necessary. Therefore, a specific

version of the second law of thermodynamics, that is, the

principle of minimum thermodynamic forces [7], is considered.

In view of the second law of thermodynamics, the entropy

production rate has to be non-negative. In the simple case of
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a = 0, we can obtain from (6) and (7):

T S. = (J + D - Yeff "a) k > o (9)

Consequently, the thermodynamic forces associated with crack

growth rate (k > 0) must also be non-negative, i.e.,

J + D - eff a 0 (10)

Experimental observations of fracture surfaces [1]

clearly show that crack propagates through the root craze by

distinct jumps in a discontinuous fashion (discrete crack

advance). Between jumps, damage within the craze fibrils

accumulates until the system reaches a state of instability

at which another jump occurs. Examination of the parallel

discontinuous growth bands of many polymers indicates that a

single jump approximates the length of a root craze. In this

connection, it is believed that a new root craze evolves

instantaneously past each jump.

Since both the energy release rate, J, and the effective

surface energy yeff depend only on CCZ configuration, therefore,

they will not change between consecutive crack jumps where the

system is considered stable. The dissipative energy, on the

other hand, accumulates during load excursions. We may there-

fore, write:

DZ(AN) = (Z,a,o, T) • AN (1])

where T is the energy dissipated per cycle and AN is the number

of cycles per crack jump.

According to the second law of thermodynamics, crack

may grow nly when the condition (10) is satisfied, i.e.,

J + T . AN- eff * a > 0 (12)
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This expression describes necessary, but insufficient

conditions of instability for the general case. Nevertheless,

under the particular conditions considered, where a uniform

stress is applied on the boundary of the system, (12) is

necessary and sufficient. When instability is reached, i.e.,

equality of (12) is achieved, CCZ jumps into a new configuration,

at which case

AN Yeff * a J

AN (13)

As we alluded to earlier, the length of a crack jump

(A2) is considered equal to the length of the root craze. The

average speed of CCZ propagation in the direction of the root

crack is therefore given by:

-= (14)
AN Yeff a - J

In the following section, we proceed to evaluate the independent

variables of this equation.

EQUATION OF CCZ PROPAGATION IN FATIGUE

A. Energy Dissipation in the Root Craze

In order to calculate the energy dissipation per cycle

in the root craze Y, we introduce few modifications to the

Dugdale model [8] which is illustrated in Fig. 2. In accordance

with experimental observations indicating discontinuous crack

growth [6], we suggest that the root craze does not undergo any

significant propagation in the period between two crack ,jumps.

During this period of no growth,the fibrils are assumed to be

under a finite stress, distributed uniformly and defined as
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c, (t) # 0. The stress distribution assumed (Fig. 2) provides

the following relationship between the crack length (k) and

root craze (2b) in terms of external stress o (t) and o,(T):

2b 2 "C'(t)

-2 sin ( ) (16)
£ 4 o,*(t)

It should be noted that the formalism of the relationship (16)

is identical to that derived by Dugdale [8]. However, the

physical meaning of a,(t) is different from that associated

with ay in Dugdale's model as explained later in the discussion.

The microscopic evidence obtained from fatigue crack

growth in many polymers justifies the assumption of a constant

2b/Z ratio, within the period between two consecutive jumps.

Accordingly, and from (16):

a(t)
= constant (17)

a*(t)

For sinusoidal loading, the time dependent stress may be

expressed as the following function:

0

or(t) max [(1 + R) + (1 - R) sin t] (18)
2

where R min is the load ratio and w is the load frequency.
0max

From (17) to (18), we may write

* max

a,(t) = [(1 + R) + (1 - R) sin wt] (19)2
Here, a*max relates to the critical craze initiation stress

which formally corresponds to Dugdale's a This stress is

considered as the stress at which a "new" root craze initiates

ahead of the crack at the moment of crack jump.
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During a load cycle, the craze is believed to maintain

the same geometry. Hence, the craze opening displacement is

described by the following function:

6(x,t) = 6,(t) • 4(x) (20)

Here, 6, is the opening displacement at the crack/root craze

boundary (Fig. 2). The function 4(x) expresses the normalized

distribution of the craze opening displacement along its axis

and is equal to unity at the crack/root craze boundary. To

account for the dissipation processes occurring within the craze

material, it is reasonable to introduce a phase lag X of the

displacement 6,(t) with respect to o,(t). In accordance with

equation (19), we may write:

6,(t) = 6 ,x [(1 + R) + (1 - R) sin (wt - A] (21)*max

From which the rate of crack/craze opening displacement is

I-R
6,(t) = 6max - cos (wt - A) (22)2

The dissipation energy per cycle T of equation (11) can

be given as:

27/w 2b

= f f o,(t) 6 *(xt) dx • dt (23)
0 0

which upon integration yields:

= 1 a*max * 6*max (24)

The term B of the above expression is given by:

2 2b(l-R)

S= - sin X • f 4(x)dx (25)
2 o

In view of recent developments [9] in which the Dugdal]

crack opening displacement was derived in terms of* the stress
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intensity factor, we may similarly write:

K2

- max
max E (26)

Finally, the energy dissipation associated with the root craze

per cycle can be given by

K
2

T max (27)

E

B. Dependency of Crack Jump on the Stress Intensity Factor

*We may recall that the crack propagates through the root

craze by distinct jumps, each such jump is At = 2b (the root

craze length). From (16), and (17), it is obvious that At is

proportional to the crack length Z (Fig. 2). In fracture

mechanics terms, the stress intensity factor is related to the

crack length through the relationship: K = c wk. V(M/B),

where the function V reflects the dependence of the stress

intensity factor on the geometry of the specimen. B is a

characteristic scale and is usually taken as the width of the

specimen. Consequently, the crack length is given by

Z =2 K2 (28)
-= 2 maVx 2

where a 2 r • V(Z/B). As Z/B<<l, the function V(Z/B% 1

and the crack length is proportional to K2 .

Using equations (14), (25) and (26) and substituting

K2

J max the equation of CCZ propagation may ultimately
E

take the form 4

AQ, B max
- =- (29)

• 2
AN E. yeff 

2 max

where 3 = SIB 2 •



DISCUSSION

The term E.y. eff . a of equation (29) can be considered

equivalent to the conventional critical stress intensity factor

K2 . Under conditions where a may vary during crack growthc

history, K2 may become a history-dependent parameter.
c

Three distinct crack growth regimes can be recognized

according to equation (29). The first regime is defined by

K2 << 1 at which case equation (29) can be rewritten as:

K 2c K4

di R max K 2 4
- [1 + max...] 2 K 4  (30)

dN K2 K max (
c c

Evidently, this regime is well approximated by Paris equation

2[11]. The condition K r 1 defines the third regime in which

K 2
c

d vs. K exhibits an asymptotic behavior (Fig. 3). Regime II

can be quite complex as shown by the dotted lines in the figure.

The complexity of this regime is strongly dependent on changes

of a which may be envisioned negligible in regimes I and III as

will be explained below.

Solution of equation (29) for two different values of

a(a 1 < a2 ) is represented in Fig. 4, where the strong dependence

of the crack growth behavior on the magnitude of a is shown.

It is therefore argued that the critical stress intenstiy factor,

conventionally thought to be a material property, could be

strongly dependent on the CCZ width and related changes. Such

dependence has been established theoretically and experimentally

for other materials [10]. In that report, K was found to be

strongly dependent on the history of loading. It should be
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emphasized here that the growth of a represents only one source

for changing K . Th evolution of another microcrazing zone far

ahead from the CCZ constitutes another influential source to

affect the magnitude of K . Naturally, the model proposed here

can account for such diverse phenomena. During the crack

propagation history, a changes into a higher value thereby causing

a reduction in the crack propagation rate or even crack

deceleration. This case is represented by the dotted line

bridging the two constant a curves (Fig. 4). Such a plateau has

been repeatedly observed in several materials including polymers

under fatigue loading conditions. An example is shown in Fig. 5.

The observed deceleration in crack growth strongly indicates the

existence of a mechanism of energy absorption different from the

main crack growth. Elucidation of such mechanism(s) is important

for understanding factors governing material toughness.

APPLICATION TO DATA

As an illustrative test for the model, some fatigue crack

growth data [12] are shown in Fig. 5 in the following form of

equation (29):

K4

dZ 8 max
- = (31)
dN 2  K 2

c max

Since the width of CCZ was not reported, the term K2 has been
c

2approximated as an average of 3.0(MPa) .m from the recently

accumulated data of polystyrene [13]. The dependency of 8 on R

was estimated from the experimental data of figure 5. These

values are tabulated below:

R 0 0.2 0.3 0.4 0.6

0 12 7.5 4.0 1.56 0.46
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Inspite of the crude estimation made to evaluate

equation (29), due to the absence of precise measurements

of the related parameters, the model provides a reasonable

description of the fatigue crack propagation. In a future

publication, we report on more accurate measurements of the

CCZ zone in various polymers together with further refinement

of the model.
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FIGURE CAPTIONS

FIG. I (a) Composite micrograph showing microcrazing
associated with crack growth in polystyrene
reproduced from ref. [3], and (b) Model of
the crack-crazing zone (see text).

FIG. 2 Crack-root craze configuration according to
Dugdale model. Note that a* replaces a of
Dugdale. y

FIG. 3 An illustration of three-regime crack propagation
history according to equation (29).

FIG. 4 Crack propagation behavior at two different values
of a. The dashes illustrates the transitional
behavior when a changes into a larger
configuration.

FIG. 5 Fatigue crack propagation data for polystyrene
taken from reference [12] and plotted in terms
of the proposed model.
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